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We study the propulsion of a micron-size paramagnetic colloidal doublet dispersed in water and driven
above a surface by an external precessing magnetic field. The applied field forces the doublet to precess around
an axis parallel to the plane of motion and the rotation of the colloidal assembly is rectified into translation due
to a periodic asymmetry in dissipation close to the bounding plate. These recent experimental findings �P.
Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagués, Phys. Rev. Lett. 101, 218304 �2008�� are comple-
mented here with a theoretical analysis of the system and extended to more complex magnetic modulations
such as elliptical driving fields. Experimental results show a good agreement with numerical simulations with
the aim to find the best conditions toward the optimization of propulsion speed and swimming efficiency.
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I. INTRODUCTION

Swimming at low Reynolds number �Re� using a finite
number of degrees of freedom requires subtle designs to
break the time-reversible nature of the fluid flow �1,2�. For
example, a system with one compact degree of freedom such
as a scalloplike micro-object having a single hinge could
never swim by periodically opening and closing its arms
since it performs a reciprocal motion, i.e., a motion com-
posed of periodic back and forward displacements, and it
will exactly retrace its trajectory during each cycle. The same
scallop would behave differently for high or intermediate Re,
i.e., when inertia plays a role �4�, or if the fluid is non-
Newtonian �5�. As argued by Purcell in his seminal work �6�,
a necessary condition to achieve propulsion in a viscous
Newtonian fluid is the presence of at least two independent
degrees of freedom which describe a closed area in the con-
figuration space.

There exist already a number of theoretical proposals for
simple swimmers which exploit the minimal number of de-
grees of freedom. Among these, one can find model swim-
mers composed by three stiff arms �6–8�, three spheres per-
forming one-dimensional displacements �9–13�, two spheres
which exchange mass cyclically while changing their relative
distance �14�, or other configurations �15–21�. Accounting
for flexibility in the swimmer, in its arms �22�, tail �23� or
body �4�, constitutes a classic alternative strategy to avoid
reciprocal motion.

Beside its fundamental motivation aimed to understand
the underlying physics of microorganism motility, there is
also a technological interest toward the fabrication of micro-

scale swimmers which can navigate in a controlled way
through small channels or porous media. These motivations
have led to various experimental realizations of microscopic
swimmers exhibiting usually flexible parts vibrated by using,
for example, external magnetic fields �15,24–27�. Another
class of realizations refers to chemically powered colloids
where power is obtained by heterogeneous catalitic reactions
on the colloidal surface, e.g., by using Pt-Au nanorods �28�
or by producing Janus colloids �29�. Also excited surface
waves �30� or electric field sources �31� have been used to
propel artificial prototypes. Despite all these results, there are
not many experimental realizations in the microscale of
minimal swimmers which do not use flexible ends, probably
due to the difficulty at such small scale to reproduce the
theoretical predictions. We note that very recently this has
been achieved by using colloidal particles in optical traps
�32�.

In our previous work �33�, we have experimentally dem-
onstrated a simple strategy to achieve propulsion of micro-
objects in water by using magnetically actuated colloidal
doublets close to a solid surface. The doublets were made by
linking two paramagnetic particles of different sizes with
DNA bridges and were subjected to an external magnetic
field precessing around an axis parallel to the plane of mo-
tion. This field forces the doublets to rotate close to the sur-
face and these rotations create an asymmetry in friction,
which is rectified into translation and net motion. The two
degrees of freedom required by the Purcell scallop theorem
are the doublet displacements parallel and perpendicular to
the solid wall. This minimal microscale swimmer, which
avoids deformations as opposed to all previously proposed
model swimmers, was found stable over changes in experi-
mental parameters and amenable to be extended to larger or
longer particle assemblies �34�.*ptierno@ub.edu
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Generalizing the study of Ref. �33�, we analyze the speci-
ficity of propulsion induced by a bounding wall following a
more comprehensive theoretical framework, and we derive
an analytical expression for the propulsion speed of the ro-
tating doublet. We discuss the effect of the hydrodynamic
interactions between the particles composing the doublet and
the asymptotic behavior of the swimmer velocity. We also
explore both experimentally and theoretically how this
mechanism of motion can be further improved by using, for
example, more general magnetic modulations. In particular
we vary the ellipticity of the applied magnetic field and show
that the doublet velocity could be effectively increased in
terms of this parameter.

In Sec. II we introduce the theoretical framework to de-
scribe the motion of the doublet and discuss the specificity of
surface-induced displacement, as opposed to other types of
swimming. In Sec. III we derive explicit analytical expres-
sions for the translation velocity as a function of the director
dynamics. Subsequently, in Sec. IV we analyze how the di-
rector which characterizes the doublet is coupled to the ac-
tuating magnetic field and obtain expressions for the mean
doublet velocity, which we compare with experimental re-
sults. The results can be easily generalized to different types
of actuating magnetic fields. We conclude by stressing the
main results in Sec. V.

II. MODEL

Let us consider a doublet made of two spheres of radii Ra
and Rb �Rb=�Ra , ��1� located at ra and rb, respectively.
The distance between the centers of these two spheres is kept
fixed at 2L��Ra+Rb�=Ra�1+��.

The center of mass of the doublet is placed at a distance h
above a solid surface where the fluid satisfies stick boundary
conditions. At low Re number, the linearity of the hydrody-
namic equations allows one to relate the velocity of each
colloidal sphere to the force acting on both of them,

va = G�a� · �1 − nn� · Fa + G�a,b� · �1 − nn� · Fb,

vb = G�a,b� · �1 − nn� · Fa + G�b� · �1 − nn� · Fb, �1�

where 1 stands for the identity matrix, while n� 1
2L �rb−ra�

denotes the director joining the two particle centers. In the
previous equations the projection of the forces along the di-
rection joining the two particles enforces the constraint
which ensures that the doublet length does not change during
its motion, n2�t�=1, and hence that the doublet does not
suffer any internal deformation during its motion. It is easy
to deduce that such a constraint force, say for particle a, is
indeed Fc=nn ·Fa, which implies that this force does not
affect the doublet velocity. In the previous equations G�a,b�

�G�ra ,rb� denotes the hydrodynamic mobility matrix which
determines the flow at particle a generated by the force act-
ing on colloid b. Accordingly, G�a��G�ra� is the mobility
matrix of particle a. Since there is no net external force act-
ing on the doublet, the total force has to vanish and accord-
ingly, Fa+Fb=0. The spheres are paramagnetic and will re-
spond to an applied magnetic field. Due to the doublet
rigidity, we can describe the effect of the imposed magnetic

field in terms of a unique characteristic force, associated with
the stress the dipole is subjected to F�Fb=−Fa. Since we
are interested in the motion of a colloidal doublet linked by
DNA bridges, we can disregard the angular velocities and
torques the individual particles are subjected to. Since the
spherical particles are paramagnetic, it is not possible, in
principle, to rotate them individually by applying a torque.
Such a rotation would generate a net translation for an iso-
lated colloid due to the hydrodynamic coupling between
translation and rotation induced by the wall. However, in our
case the doublet rotates as a result of the opposing forces
acting on the two linked spheres.

Since the doublet performs a solid rigid motion, we can
describe its displacement in terms of the rotation of the di-
rector which joins the particle centers, n, and the displace-
ment of a reference point along the line joining the two par-
ticles, r0. The latter is characterized by the fraction �, which
partitions the distance between the particles,

ra = r0 − 2L�n ,

rb = r0 + 2L�1 − ��n . �2�

Physically intuitive choices correspond to �=mb / �ma+mb�
when r0 reduces to the center of mass, rCM; �=1 /2, when r0
becomes the midpoint between the two particles; or �
=Rb / �Ra+Rb�, which corresponds to the doublet resistance
center. In terms of these variables, the doublet motion reads

ṙ0 = 2L��1 + �G�a� − G�a,b���G�b� − G�a,b��−1�−1 · ṅ − �1 − ��ṅ� .

�3�

We are interested in actuated motion where the applied
external field leads to periodic closed trajectories in the con-
figuration space. For such trajectories, the average over a
period gives �ṅ	=0, which implies that the mean doublet
velocity, �ṙ0	, does not depend functionally on the choice of
the reference point to describe the doublet displacement.

The previous expressions show that the net motion of the
doublet arises from the modification of the mobility matrices
induced by the solid substrate. It will lead to a dependence of
the self-mobility matrices G�a� and G�b� on the height of each
colloid above the solid substrate, ha�b�, and will also modify
the flow that one colloid induces on its neighbor �35�. This
latter effect is also present in the absence of a bounding wall,
but in that case it does not give rise to a net doublet displace-
ment; only the modification of the induced flow due to the
bounding wall may result in a net translation. In this sense,
the relevant contribution of this cross hydrodynamic cou-
pling can be regarded of higher order than the direct colloid-
wall mobility matrix if the distance of the doublet to the wall
is large. The relative magnitude of the cross and self-
mobilities will scale as Ra�b� /2L; hence, for elongated dou-
blets away from each other the cross mobilities will be sub-
dominant. In general, explicit expressions in powers of the
relevant distances can be obtained when the doublet is far
from the wall �36,37�. In our case, the separation between the
two colloids is not too large, but for simplicity we will as-
sume that the interaction of each particle with the solid sub-
strate is dominant, and we will neglect the cross mobilities,
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G�a,b� and G�b,a�. We will show that this simplified approach
captures the dominant hydrodynamic coupling of the colloids
to the wall and the main properties of doublet motion and it
provides quantitative agreement with the experimental re-
sults.

Assuming that the doublet propulsion velocity is deter-
mined essentially by the dynamic coupling of each colloid
with the solid surface, we are left with the mobility matrix of
an isolated sphere in the presence of a planar wall. In this
case, the doublet average translational velocity reduces to

�ṙ0	 = 2L��1 + Ga�Gb�−1�−1 · ṅ	 . �4�

Due to the axisymmetric symmetry, the mobilities can be
expressed in terms of two scalar functions, corresponding to
displacements normal and parallel to the wall. Specifically,

G�a� = C

�a��ra��1 − ẑẑ� + C�

�a��ra�ẑẑ . �5�

The functions C�
,��
�a� �ra� depend nonlinearly on the distance

to the wall. As a result, the trajectories of the two particles
with time will lead to a time variation of both n and r0; the
trajectory of the latter will be sensitive to the specific choice
of the reference point to be tracked. A further simplification
can be achieved if one selects the reference point such that
its height remains invariant during the cyclic motion of the
doublet. Using the axisymmetric nature of the mobility ma-
trices and starting from Eq. �3� the variation in height of the
reference point, h0� ẑ ·r0, can be expressed as

ḣ0 = − 2L� C�
�a�

C�
�a� + C�

�b� − ��ṅz. �6�

Requiring ḣ0=0 implies that �1−��C�
�a�=�C�

�b� must hold at
any time, a condition which cannot be satisfied due to the
nonlinear dependence of the mobilities on the time depen-
dent particle positions. Therefore, at a finite distance above
the wall it is not possible to get a value of �, showing that
the doublet does not rotate around a fixed point, and that the
joint displacements of r0 and n need to be resolved.

However, whenever the vertical displacements around the
reference height are small, it is possible to linearize around a

reference height, h̃0. In this case, ḣ0 is negligible if

1 �  C�
�a��h̃0�

C�
�a��h̃0� + C�

�b��h̃0�
− � + �h0 − h̃0�

��C�
�b��h̃0�C�

�a���h̃0� − C�
�a��h̃0�C�

�b���h̃0�

�C�
�a��h̃0� + C�

�b��h̃0��2
� . �7�

The term proportional to the height deviation vanishes for

h̃0→�, while the difference between the first two terms van-
ishes if � corresponds to the resistance center. Although this
result shows that the resistance center becomes asymptoti-
cally the natural reference point to characterize the doublet
translation, even if we consider a different reference point, it
is easy to verify that, away from the wall, the right-hand side
is smaller than one. Hence, a generic reference point can
provide a good approximation to the doublet motion.

The previous analysis indicates that the relevant reference
variable which characterizes the displacement of a swim-
ming object is sensitive to the particular mechanism which
originates its motion. For simplified swimmers, whose mo-
tion is controlled by the relative motion of their parts in
unbounded fluids, the center of resistance plays a central role
since it is the point which evolves directly due to the crossed
interaction between the moving parts, leading to the net dis-
placement through hydrodynamic interactions �38�. The mo-
tion of a moving object with prescribed shape and variable
surface velocity, in turn, is characterized through a surface
average local velocity �39�. As opposed to these previous
examples, for our doublet close to a bounding wall, the char-
acteristic relevant translational velocity does depend on the
details of the coupling to the bounding substrate.

III. PROPULSION VELOCITY

In view of the weak sensitivity of the swimmer transla-
tional velocity on the chosen reference point, we keep the
choice of our previous papers �33,34� and analyze explicitly
the translational velocity of the doublet by taking the center
of mass as reference point. Using Eqs. �2�, �3�, and �5�, the
linear relation between the center-of-mass velocity, V� ṙCM
and the doublet director reads

V =
2L

1 + �3�− C

�a� + �3C


�b�

�C

�a� + C


�b��
�1 − ẑẑ�

+
− C�

�a� + �3C�
�b�

�C�
�a� + C�

�b��
ẑẑ� ·

dn

dt
. �8�

Although general expressions for the mobility matrices of
isolated spheres in the presence of a plane wall are known
and good approximations have been proposed to cover an
arbitrary distance from the surface �35�, we will carry out
analytical analysis introducing the far-field approximation to
the particle-surface mobility functions. The mobility matri-
ces only depend on the height above the wall, za,b, and can be
written as

C
,�
�a� =

1

6��Ra
�1 − �
,�

9

16

Ra

za
+ O�Ra

za
�3� , �9�

which can be expressed in terms of the center-of-mass height
h=rCM · ẑ and the doublet orientation making use of Eq. �2�,
which read for this particular choice,

za�b�

Ra
=

h

Ra
	

2L

Ra�1 + �	3�
nz�t� �

h

Ra
	 
	nz.

In Eq. �9� � stands for the fluid viscosity, and the numerical
coefficients �
 =1 and ��=2 account for the asymmetric mo-
tion induced by the wall at this lowest order of coupling. To
leading order in the inverse separation from the solid wall,
the center-of-mass velocity reads
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V =
Ra�

�1 + �3�
dn

dt
· ���2 − 1 −

9

16
��2 − � + 1���

Ra

zb
−

Ra

za
��

��1 − ẑẑ� + ��2 − 1 −
9

8
��2 − � + 1���

Ra

zb
−

Ra

za
��ẑẑ� .

�10�

The previous relation shows how the instantaneous dou-
blet velocity changes as its orientation evolves in time. Be-
fore considering in detail how the dynamics of the director
follows the rotating magnetic field, we can already analyze
the center-of-mass velocity of the doublet as a function of the
director trajectory in the synchronous regime, i.e., when the
angle between the director and the field is constant. If the
applied magnetic field precesses around an axis parallel to
the solid substrate �which we take it to coincide with the y
axis of an appropriately chosen coordinate system without
lost of generality� with constant angular velocity �, the di-
rector will trace a closed orbit, which can be parametrized as

n�t� = �sin � sin��t + �,cos �,sin � cos��t + �� ,

�11�

where we have introduced the opening angle of the director
trajectory around the magnetic precessing axis, �, and we
have taken into account a dephasing  with respect to the
actuating magnetic field �where we have considered the ori-
gin of time such that the applied field points along the y
direction�.

The instantaneous velocity of the center of mass of the
doublet parallel to the surface is derived as

Vx =
Ra�� sin �

1 + �3 ��2 − 1 −
9

16
��2 − � + 1���

Ra

zb
−

Ra

za
��

�cos��t + � ,

Vy = 0,

Vz = −
Ra�� sin �

1 + �3 ��2 − 1 −
9

8
��2 − � + 1���

Ra

zb
−

Ra

za
��

�sin��t + � . �12�

Averaging over one period, the only nonzero component cor-
responds to the velocity parallel to the plate in the direction
perpendicular to the axis of rotation of the doublet,

�Vx	 =
9Ra�

16

���2 − � + 1�
1 + � �− � −

1

�3

+
�

�1 − �Ra

h

+ sin ��2

+
�−3

�1 − �Ra

h

− sin ��2� .

�13�

For the particular case of a symmetric doublet, when �=1,
the mean propulsion velocity simplifies to

�Vx	 =
9

16
Ra��− 1 +

1

�1 −
Ra

2

h2 sin2 �� . �14�

The obtained mean propulsion velocity is consistent with the
simple picture of a “rolling” displacement of the doublet
along the surface very similar to a wheel rolling on a solid
surface due to solid friction, where the enhanced friction
coefficient of the particles near the wall surface plays the role
of the no-slip solid friction. For a given precession orienta-
tion � the propulsion velocity is proportional to a character-
istic size of the doublet and the imposed rotation frequency.

IV. DIRECTOR DYNAMICS

We will next consider how the doublet director follows
the rotating magnetic field. Such an analysis will clarify how
the precession and dephasing angles will affect the doublet
motion.

The colloidal particles composing the doublet are para-
magnetic and thus acquire a moment m=V�H when sub-
jected to an external field H, which points along the field
direction. Here, � is the volume magnetic susceptibility and
V is the particle volume. To compute the magnetic moment
of the doublet, we have to consider the correction due to the
local dipolar field generated by the individual particles. Fol-
lowing Ref. �40�, we obtain the total moment of the doublet
as m=H��Va�a+Vb�b� / �1− �Va�a+Vb�b� / �Ra+Rb�3��nd,
where Vi and �i are the volume and magnetic susceptibility
of the particles i=a ,b and nd denotes the direction of the
induced dipole. The dipole magnetic orientation relaxes to-
ward the anisotropy doublet axis n on the Néel relaxation
time scale. We restrict ourselves to the experimentally rel-
evant regime where the director follows synchronously the
external magnetic field, which corresponds to the situation
where the internal relaxation is faster, and hence we can
assume that the two relevant orientations coincide, nd=n.

Hence, we can describe the director motion in terms of an
overdamped dynamics, where the director angular velocity �
is proportional to the magnetic torque T it experiences,
namely,

� =
1

�r
T =

�0

�r
m � H =

�0VdH�

�r
n � H , �15�

where we have introduced the effective rotational coefficient
of the doublet, �r, and the medium magnetic susceptibility
�0. Consistently with the approximations in the previous sec-
tion, we can disregard the position dependence of the rota-
tion friction coefficient. The paramagnetic character of the
particles implies that the magnitude of the induced moment
can be tuned through the intensity of the applied magnetic
field. The doublet director satisfies the kinematic equation,

dn

dt
= � � n , �16�

in terms of which we can write down explicitly

dn

dt
=

�0VdH�

�r
�H�t� − n�t��n�t� · H�t��� . �17�
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A. Circular rotating magnetic field

The rotating magnetic field can be decomposed as H�t�
=H0+H1�t�, where H0 ·H1=0. It can be characterized by the
inclination angle of the precessing axis with respect to an
axis parallel to the solid substrate, �, such that tan �
=H1 /H0. In the geometry described previously, consistent
with the parametrization of the director kinematics �Eq.
�11��, we represent the precessing magnetic field as H
= �H1 sin �t ,H0 ,H1 cos �t�. Inserting this expression in Eq.
�17�, we arrive at an explicit expression for the rotation angle
of the doublet,

cos2 � =
1

2
�1 − � �B

� cos �
�2

+��2�B

�
�2

+ �1 − � �B

� cos �
�2�2� , �18�

expressed in terms of the characteristic frequency

�B =
�0VdH�H0

�r
, �19�

which denotes the ratio between the magnetic torque and the
fraction coefficient. The dephasing angle can be written
down as

tan  = −
�

�B
cos � . �20�

For small rotating frequencies, � /�B�1, the director fol-
lows essentially the precessing magnetic field. In fact, the
director angle deviates quadratically in � /�B initially.
Namely,

cos2 � � cos2 ��1 + � �

�B
cos � sin ��2� + O� �

�B
�4

�21�

or, in terms of the angle,

� � � −
1

2
sin � cos3 �� �

�B
�2

+ O� �

�B
�4

. �22�

In this regime, the director moves in phase, lagging slightly
behind the magnetic field, since

tan  � −
�

�B
cos ��1 +

1

2
�cos � sin �

�

�B
�2� + O� �

�B
�5

,

�23�

which in terms of the angle reads

 � −
�

�B
cos ��1 +

3 sin2 � − 2

6

�2

�B
2 cos2 �� + O� �

�B
�5

.

�24�

The weak dependence on the rotating frequency implies that
in this regime the director can essentially follow the external
magnetic field.

The situation changes at high frequencies. As the fre-
quency increases beyond the characteristic doublet angular

velocity, the doublet shows a larger difficulty to follow the
actuating magnetic field. As a result, its angle starts to de-
crease and finally will become parallel to the y axis. In the
high-frequency regime, when � /�B�1,

cos2 � � 1 − ��B

�
tan ��2

+ O��B

�
�4

, �25�

in terms of the precessing angle, reads �� tan ��B /�
+O(��B /��3).

The dephasing angle increases at high frequencies, and
the director tends asymptotically to lag in quadrature with
the magnetic field, namely,

tan  � −
�

�B
�1 −

1

2
��B tan �

�
�2� + O��B

�
�3

, �26�

which in terms of the angle reads

 � −
�

2
+

�B

�
+ �5

6
+

1

2 cos2 �
���B

�
�3

+ O��B

�
�5

,

�27�

showing that to leading order the magnetic field does not
affect the doublet quadrature lagging.

The intrinsic frequency makes it possible to identify a
characteristic doublet velocity scale, V0= 9

16�����2−�
+1�� / �1+���Ra�B, in terms of which the mean doublet ve-
locity, Eq. �13�, reduces to

�Vx	
V0

= −
�

�B�� +
1

�3 −
�

�1 − �Ra
+ sin �

h
�2

−
�−3

�1 − �Ra
− sin �

h
�2� . �28�

The magnitude of the characteristic velocity V0 can be tuned
by modifying the strength of the applied magnetic field, be-
cause the magnitude of the induced dipole depends on the
field itself. The magnitude of the applied field does not affect
the other features of the doublet velocity. Both the precessing
angle and the dephasing with respect to the actuating field
depend on the dimensionless frequency � /�B and the pre-
cession angle of the magnetic field. The previous expression
shows that, for a given magnetic intensity, these are the only
two relevant parameters determining the motion of the dou-
blet.

To experimentally realize the colloidal doublets we have
used paramagnetic particles coated with streptavidin with
two different radii, Ra=1.4 �m and Rb=0.5 �m �Dyna-
beads�. As values for the magnetic volume susceptibilities of
the two particles we have used �a=0.4 �41� and �b=1.1 �42�.
The particles were linked with two complementary DNA
strands �25 bp, 8 nm long� following the procedure outlined
in the supporting information of Refs. �33,43�. The doublets
have been dispersed in Millipore water and deposited above
a clean glass plate. After �5 min the doublets sediment
above the plate and float at an elevation h due to electrostatic
repulsive interactions. The glass plate acquires a negative
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charge in water due to the dissociation of the silanol groups
�44�. The paramagnetic doublets also acquire a double layer
due to the negatively charged streptavidin located at the sur-
face of the particles. The balance between gravity and elec-
trostatic interactions confines the doublets, which show a dif-
fusion predominantly in the �x ,y� direction and diffusion
coefficient D=0.06�0.01 �m2 /s, as estimated from the
mean-square displacement �not shown here�. The external
magnetic field is provided by using three custom-made coils
perpendicular to each other and having the main axes along
the �x ,y ,z� directions.

In Fig. 1�b� we show three microscope images taken at
different times �0, 7.8, and 16.0 s� of a paramagnetic doublet
subjected to an external magnetic field having H0 /H1=0.27
and �=81.7 s−1. After 16 s the doublet covers a distance of
�54 �m following almost a linear trajectory. Small devia-
tions from a straight line are due to Brownian forces which
are capable to slightly perturb the linear motion over times
larger than �−1.

In Fig. 2 we show the scaled doublet velocity V /V0 as a
function of � /�B �with an error bar ��V /V0�=0.1� for a
doublet subjected to a magnetic field with precession angle
H0 /H1=0.27. The experimental points are represented by
open circles while the continuous line is a theoretical fit
made by using Eq. �28�. From the fit we estimate the eleva-
tion h of the doublet from the plate to be h=2.05 �m and
the rotational friction coefficient �r=8.6�10−19 N s m,
which enters into the expression of �B. The agreement be-
tween the theory and the experimental data is very good. At
small rotating frequencies, the change in the precessing angle
is subdominant because, as we have shown, the change in
precessing angle is quadratic in the magnetic field frequency.

Hence, the initial increase in the swimming velocity is linear,

�Vx	
V0

� −
�

�B�� +
1

�3 −
�

�1 − �Ra
+ sin �

h
�2

−
�−3

�1 − �Ra
− sin �

h
�2� + O� �

�B
�3

. �29�

The dashed line in Fig. 2 shows this asymptotic behavior for
� /�B�3. The asymptotic expression capture well the de-
pendency of the speed on the external frequency.

In the limit of large frequencies the doublet precessing
angle starts decreasing. This leads to a corresponding de-
crease in the velocity at which the doublet displaces, which
decays asymptotically to zero as

�Vx	
V0

�
��1 + �2�

2
�
+�2�B

�
�Ra

h
tan ��2

+ O��B

�
�3

.

�30�

This limit is illustrated in Fig. 2 by the second dashed line
for � /�B�3, showing that the asymptotic will be reached at
high frequencies. However, it was not possible to measure
the doublet speed at frequencies higher than ��6�B and
thus to test the second asymptotic limit. This is because at
large frequencies of the external field asynchronous motion
of the rotating doublet occurs which lead to a further reduc-
tion in the doublet motion.

Figure 2 shows that the doublet motion is characterized
by two different dynamic regimes. A first regime appears at
low frequencies, where the doublet essentially follows the
actuating field, and where its velocity increases linearly with
the rotating frequency of the field. Such a linear dependence
is expected since we are operating the doublet in the low Re
regime. At high enough frequencies, the doublet cannot fol-
low the rotation frequency of the field. In the synchronous

FIG. 1. �Color online� �a� Scheme showing a paramagnetic dou-
blet floating above a glass plate �distance from center of mass h�
and subjected to an external magnetic field H precessing around the
y axis with frequency �. � denotes the angle that the doublet direc-
tor makes with the y axis and H0 ,H1 the field components along the
y and z axes. �b� Microscope images taken at different times of a
doublet traveling with a speed of �3 �m /s. Superimposed is the
particle trajectory after 7.8 and 16.0 s. In �3� the corresponding
video file is deposited.

FIG. 2. �Color online� Scaled doublet velocity V /V0 as a func-
tion of the normalized frequency � /�B for H0 /H1=0.27 and h
=2.05 �m. The experimental data �open circles� are plotted to-
gether with a nonlinear curve fit �continuous line� and Eqs. �29� and
�30� for the limits � /�B→0 and � /�B→� �dashed lines�,
respectively.
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regime the doublet precessing angle starts to decrease and
the doublet lags behind the forcing field. The effective veloc-
ity of the doublet then decays and vanishes at high enough
frequencies because the doublet aligns parallel to the sub-
strate wall.

To elucidate the dependence of the doublet velocity from
the various system parameters, we have plotted Eq. �28� in
Fig. 3 for different precessing ratios of the magnetic field
H0 /H1 �Fig. 3�a�� and different distances from the surface h
�Fig. 3�b��. In both images the continuous lines refer to the
experimental conditions with h=2.05 �m and H0 /H1=0.27.
From the first graph it follows that decreasing the precession
ratio increases the peak of the curve while shifting it toward
the higher frequencies. Lower precession ratios of the ap-
plied magnetic field correspond to higher precession angles �
of the doublet and thus to rotations closer to the surface.
Such trajectories enforce the friction asymmetry during each
cycle and increase the rate of rectification into motion i.e.,
the doublet speed. The effect of the plate on the doublet
motion is clearly evidenced in Fig. 3�b� where small changes
in the doublet elevation produce large variation in the peak
speed of the doublets. We note also that decreasing h slightly
shifts the speed peak toward the lower frequencies and in-
duces a faster decrease as the frequency increases.

B. Elliptical rotating magnetic field

We consider here an extension of our model for the case
when the external magnetic field is elliptically polarized in

the �x ,z� plane. This gives a different behavior from the cir-
cular magnetic field since the displacements of the small par-
ticle along x and z axes are not equivalent due to the pres-
ence of the plane. The external magnetic field can be written
in terms of the ellipticity parameter � as �45� H�t�
= �H1

�1+� sin �t ,H0 ,H1
�1−� cos �t�. The director dy-

namics can be found by numerically solving Eq. �17�, and
the results are shown for one field cycle in Fig. 4�a� for a
circular magnetic field ��=0� and two elliptically polarized
fields with �=−0.7 and 0.7. When ��0, the director n is
forced to describe a curved trajectory in the plane �z ,y� since
it has to satisfy at any point the condition �n�=1. The projec-
tion of the director dynamics along the �x ,y� plane is repre-
sented by a line for a circular field �=0 and two opposite
parabolic trajectories for �= �0.7. Depending on the ellip-
ticity �, the doublet acquires different velocities. In Fig. 4�b�
we show the normalized doublet velocity V /V0 as a function
of the scaled frequency � /�B for four different magnitudes
of �.

Almost all curves follow the same trend at small frequen-
cies ���3�B�, while they differ at large frequencies. The
peak velocity is higher for negative ellipticity values with a
peak velocity Vp=0.88V0 at �=−0.2, which corresponds to a
speed of �3 �m /s. This is reasonable since decreasing �
the small particle rotates closer to the bounding plate follow-
ing this curved asymmetric trajectory. Moreover, increasing

FIG. 3. �Color online� Scaled doublet velocity V /V0 as a func-
tion of the normalized frequency � /�B �a� for different precession
ratios H0 /H1 with h=2.05 �m and �b� for different distances from
the wall h with H0 /H1=0.27.

FIG. 4. �Color online� �a� Representation in the three-
dimensional space of the director tip trajectories for different ellip-
ticity parameters, �=−0.7, 0, and 0.7. �b� Scaled doublet velocity as
a function of � /�B for different values of �. The upper inset shows
an enlargement of the graphs close to the velocity maximum with
H0 /H1=0.27 and h=2.05 �m.
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the magnitude of � decreases the area described by the dou-
blet and its efficiency in rectification since in the limit �
= �1 the doublet would not further move. To characterize
the doublet motion when subjected to an elliptically polar-
ized magnetic field, we numerically calculate the peak ve-
locities Vp for different ratios H0 /H1 and plot them as a
function of � in Fig. 5 for a fixed frequency of �
=62.8 s−1. Together with the theoretical values �continuous
line� we show experimental points �filled circles� taken by
using the setup of Ref. �34� and under the conditions of
H0 /H1=0.25. The peak velocity decreases by increasing the
field ellipticity for both signs and stops when �=1. The
asymmetric dependence with positive and negative values of
the ellipticity � reflects how the rotating colloid feels the
asymmetry in friction coupling to the wall. The discrepancy
between the experimental points and theoretical curves in
Fig. 5 could be due to various effects. Our analysis, which
considers the predominant magnetic and hydrodynamic inter-
actions did not account for other smaller effects arising from
electrostatic and steric interactions between the particle and
the plane. Such interactions, which are more difficult to con-
sider due to unknown parameters such us surface charge and
thickness of the DNA chains covering the particle, can affect
the particle motion but fall inside the experimental errors of
our measurements. In this respect we notice that for negative
� the vertical displacement of the doublet will be larger and
thus more sensitive to the details of these interactions.

V. CONCLUSIONS

We have studied the propulsion of micron-size elongated
composites of paramagnetic colloidal doublets rotating close
to a solid wall due to externally precessing magnetic fields.
Direct propulsion of floating microscopic objects is achieved
either by continuous actuation from outside �passive swim-
mer� or autonomous motion using some internal energy
source �active swimmer�. We have shown that undeformable
colloidal composites change cyclically their distance to the
plate during precession, with this being the clue to break
time reciprocity because it takes advantage of the distance-
dependent friction coefficient near a substrate. Our particu-
larly simple model shows a mode of propulsion, which is
particularly suited in confined geometries, as is the case in
microfluidic environments and opens general perspectives
for controlling micro-objects in confined fluids.

The actuated swimmer we have analyzed in detail differs
from previous existing experimental realizations because it
does not need to modify its shape and makes use of the two
minimal independent degrees of freedom for propulsion i.e.,
displacements along and perpendicular to the bounding plate.
The simplicity of the object has allowed us to identify the
relevance of the bounding wall in order to identify the rel-
evant degrees of freedom, which turn out to be specific to the
particular mechanism that gives rise to self-propulsion. Ac-
tuated swimming due to a bounding wall differs in this re-
spect from unbounded swimming due to body deformation
or through a slip velocity on fixed shaped swimmers. We
have shown that it is possible to optimize the system by
using elliptic magnetic fields which induce rotations of the
small particles closer to the solid wall and enhances the fric-
tion anisotropy induced by the bounding wall. Due to this
reason, we believe that objects with anisotropic shapes will
exhibit larger swimming velocity than their symmetric coun-
terparts. Research in this direction employing different shape
particles represents further direction of this work.
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